\(\displaystyle\lim_{x \to 0}\left( \frac{\sin x}{x} \right) = 1\) con \(x\) espressa in radianti
\(\displaystyle\lim_{\alpha \to 0}\left( \frac{\sin\alpha}{\alpha} \right) = \frac{\pi}{180}\) con \(\alpha\) espressa in gradi sessagesimali
\(Se \; \displaystyle\lim_{x \to c}f(x)=0 \quad allora \quad \lim_{x \to c}\left( \frac{\sin \left(f(x)\right)}{f(x)} \right) = 1\)
\(\displaystyle\lim_{x \to 0}\left( \frac{\sin \left( mx \right)}{kx} \right) = \frac{m}{k}\)
\(\displaystyle\lim_{x \to 0}\left( \frac{\sin \left( mx \right)}{\sin \left(kx\right)} \right) = \frac{m}{k}\)
Esercizio n.1
\(\displaystyle\lim_{x \to 0} \left( \frac{\tan x}{x} \right) = 1\)
+ Soluzione
\( \begin{align}
\lim_{x \to 0} \left( \frac{\tan x}{x} \right) &= \lim_{x \to 0}\left(\frac{\sin x}{\cos x} \cdot \frac{1}{x}\right) =\\ \\
&= \lim_{x \to 0}\left(\frac{\sin x}{x} \cdot \frac{1}{\cos x}\right) =\\ \\
&= 1 \cdot 1=1\\
\end{align}\)
Esercizio n.1bis
\(\displaystyle\lim_{x \to 0} \left( \frac{x}{\tan x} \right) = 1\)
+ Soluzione
\( \displaystyle\lim_{x \to 0} \left( \frac{x}{\tan x} \right) = \lim_{x \to 0} \left( \frac{1}{\large\frac{\tan x}{x}} \right) = \frac{1}{1} = 1 \)
Esercizio n.2
\(\displaystyle\lim_{x \to 0} \left( \frac{1-\cos x}{x} \right) = 0\)
+ Soluzione
\( \begin{align}
\lim_{x \to 0} \left( \frac{1-\cos x}{x} \right) &= \lim_{x \to 0}\frac{\left(1-\cos x \right) \cdot \left(1+\cos x\right)}{x \cdot \left(1+\cos x\right)} =\\ \\
&= \lim_{x \to 0}\frac{\left(1-\cos^2 x \right)}{x \cdot \left(1+\cos x\right)} = \lim_{x \to 0}\frac{\sin^2 x}{x \cdot \left(1+\cos x\right)} =\\ \\
&= \lim_{x \to 0}\left(\frac{\sin x}{x} \cdot \sin x \cdot \frac{1}{1+\cos x}\right) =\\ \\
&= 1 \cdot 0 \cdot \frac{1}{2} = 0\\
\end{align}\)
Esercizio n.2bis
\(\displaystyle\lim_{x \to 0^\pm} \left( \frac{x}{1-\cos x} \right) = \pm \infty\)
+ Soluzione
\( \begin{align}
\lim_{x \to 0^\pm} \left( \frac{x}{1-\cos x} \right) &= \lim_{x \to 0^{\pm}} \left( \frac{1}{\large\frac{1-\cos x}{x}} \right) = \frac{1}{0^\pm} = \pm\infty\\
\end{align}\)
Esercizio n.3
\(\displaystyle\lim_{x \to 0} \left( \frac{1-\cos x}{x^2} \right) = \frac{1}{2}\)
+ Soluzione
\( \begin{align}
\lim_{x \to 0} \left( \frac{1-\cos x}{x^2} \right) &= \lim_{x \to 0}\frac{\left(1-\cos x \right) \cdot \left(1+\cos x\right)}{x^2 \cdot \left(1+\cos x \right)} =\\ \\
&= \lim_{x \to 0}\frac{\left(1-\cos^2 x \right)}{x^2 \cdot \left(1+\cos x\right)} =\\ \\
&= \lim_{x \to 0}\frac{\sin^2 x}{x^2 \cdot \left(1+\cos x\right)} =\\ \\
&= \lim_{x \to 0}\left(\frac{\sin x}{x} \cdot \frac{\sin x}{x} \cdot \frac{1}{1+\cos x}\right) =\\ \\
&= 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}\\
\end{align}\)
Esercizio n.4
\(\displaystyle\lim_{x \to 0} \left( \frac{1-\cos x+\sin x}{1-\cos x-\sin x} \right) = -1\)
+ Soluzione
\( \begin{align} \lim_{x \to 0}\left(\frac{1-\cos x+\sin x}{1-\cos x-\sin x}\right) &= \lim_{x \to 0}\frac{\large\frac{1-\cos x}{x}+\frac{\sin x}{x}}{\large\frac{1-\cos x}{x}-\frac{\sin x}{x}} =\\ \\
&= \lim_{x \to 0}\frac{0+1}{0-1}=-1\\
\end{align} \)
+ Soluzione
\( \begin{align} \lim_{x \to 0}\left(\frac{1-\cos x+\sin x}{1-\cos x-\sin x}\right) &= \lim_{x \to 0}\left(\frac{1-\cos x+\sin x}{1-\cos x-\sin x} \cdot \frac{1+\cos x}{1+\cos x} \right) =\\ \\
&= \lim_{x \to 0}\left(\frac{\left(1-\cos x\right)\left(1+\cos x \right)+\sin x \left( 1+\cos x \right)}{\left(1-\cos x\right)\left(1+\cos x \right)-\sin x\left( 1+\cos x \right)} \right) =\\ \\
&= \lim_{x \to 0}\left(\frac{\left(1-\cos^2 x\right)+\sin x \left(1+\cos x \right)}{\left(1-\cos^2 x\right)-\sin x\left(1+\cos x \right)} \right) =\\ \\
&= \lim_{x \to 0}\left(\frac{\sin^2 x+\sin x \left(1+\cos x \right)}{\sin^2 x-\sin x\left(1+\cos x \right)} \right) =\\ \\
&= \lim_{x \to 0}\left(\frac{\cancel{\sin x} \cdot \left( \sin x + 1+ \cos x \right)}{\cancel{\sin x} \cdot \left( \sin x - \left(1+\cos x \right) \right)} \right) =\\ \\
&= \lim_{x \to 0}\left(\frac{0 + 1 + 1 }{0 - \left( 1 + 1 \right)} \right) = \frac{2}{-2} = -1\\
\end{align} \)
Esercizio n.5
\(\displaystyle\lim_{x \to 0} \left( \frac{\tan x-\sin x}{2x^3} \right) = \frac{1}{4}\)
+ Soluzione
\( \begin{align}
\lim_{x \to 0} \left( \frac{\tan x-\sin x}{2x^3} \right) &= \lim_{x \to 0} \left( \frac{\frac{\sin x}{\cos x}-\sin x}{2x^3} \right) =\\ \\
&= \lim_{x \to 0} \left( \frac{\frac{\sin x - \sin x \cdot \cos x}{\cos x}}{2x^3} \right) =\\ \\
&= \lim_{x \to 0} \left( \frac{\sin x \cdot \left( 1 - \cos x \right)}{2x^3 \cdot \cos x} \right) =\\ \\
&= \lim_{x \to 0}\left(\frac{1}{2 \cdot \cos x} \cdot \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x^2}\right) =\\ \\
&= \frac{1}{2} \cdot 1 \cdot \frac{1}{2} = \frac{1}{4}\\
\end{align}\)
\(\displaystyle\lim_{x \to \infty}\left( 1 + \frac{1}{x} \right)^x = e\)
\(\displaystyle\lim_{x \to \infty}\left( 1 + \frac{m}{x} \right)^x = e^m\) con \(m \in \mathbb{R}\)
\(\displaystyle\lim_{x \to \infty}\left( 1 + \frac{m}{x} \right)^{kx} = e^{mk}\)
\(\displaystyle\lim_{x \to 0}\left( 1 + mx \right)^{\frac{1}{x}} = e^m\) con \(m \in \mathbb{R}\)
Esercizio n.11
\(\displaystyle \lim_{x \to +\infty}\left[x\cdot\ln\left( 1 + \frac{1}{x} \right)\right] = 1\)
+ Soluzione
\( \begin{align}
\lim_{x \to +\infty}\left[x\cdot\ln\left( 1 + \frac{1}{x} \right)\right] &= \lim_{x \to +\infty}\left[\ln\left( 1 + \frac{1}{x} \right)^x\:\right] =\\ \\
&= \ln \left[\lim_{x \to +\infty}\left( 1 + \frac{1}{x} \right)^x\:\right] = \ln e = 1\\ \\
\end{align}\)
Esercizio n.12
\(\displaystyle\lim_{x \to +\infty}\left( \frac{x+1}{x-1} \right)^x = e^2\)
+ Soluzione
\( \begin{align}
\lim_{x \to +\infty}\left( \frac{x+1}{x-1} \right)^x &= \lim_{x \to +\infty}\left[\frac{\left( \frac{x+1}{x} \right)^x}{\left( \frac{x-1}{x} \right)^x}\right] =\\ \\
&= \frac{\displaystyle\lim_{x \to +\infty}\left( \frac{x+1}{x} \right)^x}{\displaystyle\lim_{x \to +\infty}\left( \frac{x-1}{x} \right)^x} = \frac{e}{e^{-1}} = e^2 \\ \\
\end{align}\)